Boosting Methods: Why they can be useful for High-Dimensional Data
نویسنده
چکیده
We present an extended abstract about boosting. We describe first in section 1 (in a self-contained way) a generic functional gradient descent algorithm, which yields a general representation of boosting. Properties of boosting or functional gradient descent are then very briefly summarized in section 2.
منابع مشابه
Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملEvaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کاملDiscussion of Boosting Papers
We congratulate the authors for their interesting papers on boosting and related topics. Jiang deals with the asymptotic consistency of Adaboost. Lugosi and Vayatis study the convex optimization of loss functions associated with boosting. Zhang studies the loss functions themselves. Their results imply that boosting-like methods can reasonably be expected to converge to Bayes classifiers under ...
متن کاملBoosting for High-multivariate Responses in High-dimensional Linear Regression
We propose a boosting method, multivariate L2Boosting, for multivariate linear regression based on some squared error loss for multivariate data. It can be applied to multivariate linear regression with continuous responses and to vector autoregressive time series. We prove, for i.i.d. as well as time series data, that multivariate L2Boosting can consistently recover sparse high-dimensional mul...
متن کاملBoosting with missing predictors.
Boosting is an important tool in classification methodology. It combines the performance of many weak classifiers to produce a powerful committee, and its validity can be explained by additive modeling and maximum likelihood. The method has very general applications, especially for high-dimensional predictors. For example, it can be applied to distinguish cancer samples from healthy control sam...
متن کامل